Concurrent validity and reliability of a novel wireless inertial measurement system to assess trunk movement.

نویسندگان

  • C M Bauer
  • F M Rast
  • M J Ernst
  • J Kool
  • S Oetiker
  • S M Rissanen
  • J H Suni
  • M Kankaanpää
چکیده

INTRODUCTION Assessment of movement dysfunctions commonly comprises trunk range of motion (ROM), movement or control impairment (MCI), repetitive movements (RM), and reposition error (RE). Inertial measurement unit (IMU)-systems could be used to quantify these movement dysfunctions in clinical settings. The aim of this study was to evaluate a novel IMU-system when assessing movement dysfunctions in terms of concurrent validity and reliability. METHODS The concurrent validity of the IMU-system was tested against an optoelectronic system with 22 participants. The reliability of 14 movement dysfunction tests were analysed using generalizability theory and coefficient of variation, measuring 24 participants in seven trials on two days. RESULTS The IMU-system provided valid estimates of trunk movement in the primary movement direction when compared to the optoelectronic system. Reliability varied across tests and variables. On average, ROM and RM were more reliable, compared to MCI and RE tests. DISCUSSION When compared to the optoelectronic system, the IMU-system is valid for estimates of trunk movement in the primary movement direction. Four ROM, two MCI, one RM, and one RE test were identified as reliable and should be studied further for inter-subject comparisons and monitoring changes after an intervention.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Concurrent Validity of Accelerations Measured Using a Tri-Axial Inertial Measurement Unit while Walking on Firm, Compliant and Uneven Surfaces

Although accelerometers are extensively used for assessing gait, limited research has evaluated the concurrent validity of these devices on less predictable walking surfaces or the comparability of different methods used for gravitational acceleration compensation. This study evaluated the concurrent validity of trunk accelerations derived from a tri-axial inertial measurement unit while walkin...

متن کامل

A Real-time Motion Tracking Wireless System for Upper Limb Exosuit Based on Inertial Measurement Units and Flex Sensors (TECHNICAL NOTE)

This paper puts forward a real-time angular tracking (motion capture) system for a low cost upper limb exosuit based on sensor fusion; which is integrated by an elastic sleeve-mitten, two inertial measurement units (IMU), two flex sensors and a wireless communication system. The device can accurately detect the angular position of the shoulder (flexion-extension, abduction-adduction and interna...

متن کامل

Inertial Measurement Units for Clinical Movement Analysis: Reliability and Concurrent Validity

The aim of this study was to investigate the reliability and concurrent validity of a commercially available Xsens MVN BIOMECH inertial-sensor-based motion capture system during clinically relevant functional activities. A clinician with no prior experience of motion capture technologies and an experienced clinical movement scientist each assessed 26 healthy participants within each of two sess...

متن کامل

Towards Mobile Gait Analysis: Concurrent Validity and Test-Retest Reliability of an Inertial Measurement System for the Assessment of Spatio-Temporal Gait Parameters

The purpose of this study was to assess the concurrent validity and test-retest reliability of a sensor-based gait analysis system. Eleven healthy subjects and four Parkinson's disease (PD) patients were asked to complete gait tasks whilst wearing two inertial measurement units at their feet. The extracted spatio-temporal parameters of 1166 strides were compared to those extracted from a refere...

متن کامل

Precision and Reliability Incensement of Inertial Navigation System with Rotation and Redundancy

Precision and reliability are two main performance characteristic in low-cost Inertial Navigation System(INS). Increase of precision in low-cost INS without auxiliary sensors is main challenge. Bias instability leads to position drift error in inertial navigation system. In addition, fault occurrence makes the sensor reliability is decreased. Rotation of Inertial Measurement Unit(RIMU) and use ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of electromyography and kinesiology : official journal of the International Society of Electrophysiological Kinesiology

دوره 25 5  شماره 

صفحات  -

تاریخ انتشار 2015